The Empire District Electric Company

Requirements For Standby Generators

(800) 206 - 2300

The latest revision of this book can be found at www.empiredistrict.com under the "Customer Service" tab.

Effective 05/05/2015

TABLE OF CONTENTS

1.0	INTRODUCTION	1
2.0	DEFINITIONS	2
3.0	GENERAL SAFETY	3
4.0	GENERATOR SIZING	5
5.0	OPTIONAL STANDBY GENERATORS	6

TABLE OF FIGURES

FIGURE 1: 100A NON-PERMANENT STANDBY GENERATOR, PARTIAL LOAD, MANUAL	8
FIGURE 2: 400A NON-PERMANENT STANDBY GENERATOR, PARTIAL LOAD, MANUAL	9
FIGURE 3: 200A NON-PERMANENT STANDBY GENERATOR, WHOLE LOAD, MANUAL	10
FIGURE 4: 100A / 200A DETAIL OF NON-PERMANENT STANDBY GENERATOR, WHOLE LOAD, MANUA	AL .11
FIGURE 5: 400A DETAIL OF NON-PERMANENT STANDBY GENERATOR, WHOLE LOAD, MANUAL	12
FIGURE 6: 100A PERMANENT STANDBY GENERATOR, PARTIAL LOAD, AUTOMATIC	13
FIGURE 7: 400A PERMANENT STANDBY GENERATOR, PARTIAL LOAD, AUTOMATIC	14
FIGURE 8: 200A PERMANENT STANDBY GENERATOR, WHOLE LOAD, AUTOMATIC	15
FIGURE 9: 400A PERMANENT STANDBY GENERATOR, WHOLE LOAD, AUTOMATIC	16
FIGURE 10: GENERATOR CONFIGURATION	17
FIGURE 11: STANDBY GENERATOR PLACARD	19

1.0 INTRODUCTION

The Empire District Electric Company constantly strives to maintain a high standard of service to all Customers. This booklet has been prepared for use by Customers, architects, engineers, electrical contractors and local inspecting authorities so they may receive full benefit from our service. Copies are available at the Empire District Electric Company's Corporate office, service centers, and web site. All holders of "Requirements For Standby Generators and Net Metering" booklets are encouraged to submit comments to aid in future revisions. Please submit comments as follows:

- 1. Give section, paragraph and page number to which the comment pertains.
- 2. Submit comments in writing; giving details, sketches, drawings, and all supporting pertinent information.
- 3. Mail, FAX, or Email to:

THE EMPIRE DISTRICT ELECTRIC COMPANY

Stephen Shull

PO Box 127

Joplin MO 64802

FAX #: (417) 625 -5149

Email: sshull@empiredistrict.com

The impression generally prevails that compliance with the National Electrical Code (NEC), or the various electrical ordinances guarantees to the Customer a wiring installation complete and adequate for the full use of electric service now and in the future. This is not necessarily the case. The NEC and these guidelines are designed to provide the minimum requirements considered necessary for safety. (The 2008 NEC, Article 90.1 B itself states, "Compliance therewith and proper maintenance will result in an installation essentially free from hazard, but not necessarily efficient, convenient or adequate for good service for future expansion of electrical use.") Careful design and installation often results in a wiring system that exceeds NEC requirements.

THE EMPIRE DISTRICT ELECTRIC COMPANY, as a utility, must meet the requirements of the National Electrical Safety Code (NESC), which sometimes differ from the National Electrical Code (NEC).

The Company shall have the right to disconnect or refuse service to any installation which violates local, municipal, NEC or NESC regulations. The Company shall also have the right to disconnect or refuse service for installations that are hazardous to the public, or negatively impacts service to other Customers, or Company facilities.

Except for the installation and maintenance of its own property, THE EMPIRE DISTRICT ELECTRIC COMPANY does not install or repair wiring or equipment beyond the point of delivery. Therefore, EDE is not responsible for the voltage levels beyond the point of delivery and does not assume any responsibility for Customer facilities beyond the point of delivery. Your cooperation will be greatly appreciated and will enable you to receive prompt and satisfactory service.

2.0 DEFINITIONS

Backfeed When electric power flows in the opposite direction from it's usual flow.

Company THE EMPIRE DISTRICT ELECTRIC COMPANY.

EDE THE EMPIRE DISTRICT ELECTRIC COMPANY.

Generator A machine that converts mechanical energy into electrical energy.

Open Transition A double throw switch provides a break before make when transferring

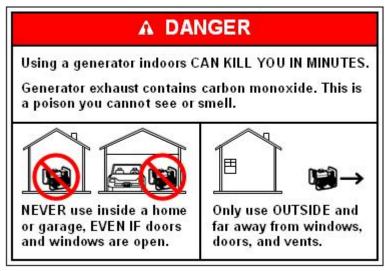
from one source to another. A break before make transfer switch breaks contact with one source of power before it makes contact with another.

Transfer Switch A disconnecting device that allows safe switching from utility power to

emergency generator power while maintaining isolation of each source

from the other. Can be manually or automatically done.

3.0 GENERAL SAFETY


Closed transition upon utility restore switch configurations will not be allowed. This is due to the potential liability that the Company and the Customer may have to other Customers due to damaged equipment caused by improper installation and maintenance that may occur during the life of the device. This is particularly true for installations that do not have a dedicated, licensed electrical maintenance group at the facility.

Portable generators are useful when temporary or remote electric power is needed, but they also can be hazardous. The primary hazards to avoid when using a generator are carbon monoxide (CO) poisoning from the toxic engine exhaust, electric shock or electrocution, fire and burns.

Every year, people die in incidents related to portable generator use. Most of the incidents associated with portable generators reported to Consumer Product Safety Commision (CPSC) involve CO poisoning from generators used indoors or in partially-enclosed spaces.

Carbon Monoxide Hazards

When used in a confined space, generators can produce high levels of CO within minutes. When you use a portable generator, remember that you cannot see or smell CO. Even if you do not smell exhaust fumes, you may still be exposed to CO.

Danger labels are required on all portable generators manufactured or imported on or after May 14, 2007. If you start to feel sick, dizzy, or weak while using a generator, get to fresh air **RIGHT AWAY. DO NOT DELAY**. The CO from generators can rapidly kill you.

Follow these safety tips to protect against CO poisoning:

- **NEVER** use a generator inside homes, garages, crawlspaces, sheds, or similar areas, even when using fans or opening doors and windows for ventilation. Deadly levels of carbon monoxide can quickly build up in these areas and can linger for hours, even after the generator has shut off.
- Follow the instructions that come with your generator. Locate the unit outdoors and far from doors, windows, and vents that could allow CO to come indoors.
- Install battery-operated CO alarms or plug-in CO alarms with battery back-up in your home, according to the manufacturer's instructions. CO alarms should be certified to the requirements of the latest safety standards (UL 2034, IAS 6-96, or CSA 6.19.01). Test batteries monthly.

To avoid CO poisoning when using generators:

- Never run generators indoors, including garages, basements, crawlspaces and sheds.
- Get to fresh air right away if you start to feel dizzy or weak.

Electrical Hazards:

- Generators pose a risk of shock and electrocution, especially if they are operated in wet conditions. If you must use a generator when it is wet outside, protect the generator from moisture to help avoid the shock/electrocution hazard, but do so without operating the generator indoors or near openings to any building that can be occupied in order to help avoid the CO hazard. Operate the generator under an open, canopy-like structure on a dry surface where water cannot reach it or puddle or drain under it. Dry your hands, if wet, before touching the generator.
- Connect appliances to the generator using heavy-duty extension cords that are specifically designed for
 outdoor use. Make sure the wattage rating for each cord exceeds the total wattage of all appliances
 connected to it. Use extension cords that are long enough to allow the generator to be placed outdoors
 and far away from windows, doors and vents to the home or to other structures that could be occupied.
 Check that the entire length of each cord is free of cuts or tears and that the plug has all three prongs.
 Protect the cord from getting pinched or crushed if it passes through a window or doorway.
- **NEVER** try to power the house wiring by plugging the generator into a wall outlet, a practice known as "backfeeding." This is extremely dangerous and presents an electrocution risk to utility workers and neighbors served by the same utility transformer. It also bypasses some of the built-in household circuit protection devices.

Fire Hazards:

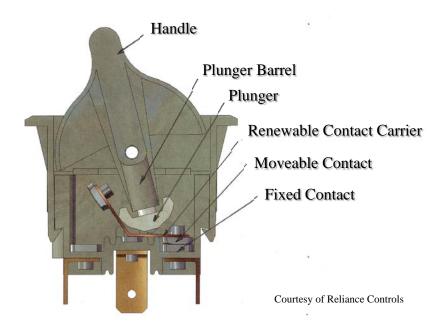
- **Never** store fuel for your generator in the home. Gasoline, propane, kerosene, and other flammable liquids should be stored outside of living areas in properly-labeled, non-glass safety containers. Do not store them near a fuel-burning appliance, such as a natural gas water heater in a garage.
- Before refueling the generator, turn it off and let it cool down. Gasoline spilled on hot engine parts could ignite.

Consumers can obtain this and additional safety information from the <u>Publications section</u> of CPSC's web site or by sending your publication request to <u>info@cpsc.gov</u> or write the U.S. Consumer Product Safety Commission, Office of Information and Public Affairs, 4330 East West Highway, Bethesda, MD 20814.

4.0 GENERATOR SIZING

There are various methods to size a generator to meet the service load. This sizing depends not only on the service load but the starting current required by the various motors served. Another issue in sizing is the requirement of the Authority-Having-Juristiction over the electrical facilities. Their requirements may be quite different than what is put forth in this document or by the NEC. EDE always recommends that the Customer use a qualified licensed electrician to size a generator. The electrician will take all of these factors into consideration in the generator sizing process. However, the worksheet shown below can give some guidance to sizing a Generator.

Please keep these things in mind when using this worksheet:


- These are typical load values.
- Actual loads served by the generator may vary from these values.
- For a new installation, the load is determined by NEC Article 220.
- For existing facilities, the NEC Article 220.87 allows the sizing of the service equipment capacity by looking
 at the maximum demand data for one year or the average power demand of a 15 minute period over a
 minimum of 30 days. Since the service equipment will be supplied by the Generator, these values can
 guide you on generator sizing. Unfortunately, in most applications, these values are not available from
 EDE.
- To guarantee all motor driven equipment will be able to start simultaneously, select from the starting watts
 column when entering the watts into the "Selected Watts" column. If the loads will be staggered in their
 starts, the "Running Watts" may be used in the "Selected Watts" column. However it should be noted that
 under certain conditions motor loads may not start without causing damage to the motor or stalling the
 generator.
- If a Uninterruptible Power Supply (UPS) system is being used, the watts of the UPS should be multiplied by three in order to account for any harmonic loading produced by the UPS.
- When using an automatic transfer switch, the 2008 NEC Article 702.5(B)(2) requires the generator to have adequate capacity to supply the full load transferred.

APPLIANCE	STARTING WATTS	RUNNING WATTS	SELECTED WATTS
LIGHTING LOAD Total Square Feet of the House X		3	
TELEVISION, 27"		500	
REFRIGERATOR/FREEZER	1950	700	
DEEP FREEZER	1200	700	
1/3 HP FURNACE FAN	1600	800	
1/3 HP SUMP PUMP, CODE G	1600	800	
1/2 HP SUMP PUMP, CODE G	3600	1200	
1/4 HP GARAGE DOOR OPERATOR	1200	600	
MICROWAVE OVEN	1500	750	
ELECTRIC WATER HEATER 50 GAL.	5000	5000	
COMPUTER (DESKTOP, MONITOR, LASER PRINTER)	1500	1500	
DISHWASHER (HOT DRY)	1500	1500	
PORTABLE ELECTRIC HEATER	1500	1500	
AIR CONDITIONER 12,000 BTU (1 Ton)	7600	1900	
AIR CONDITIONER 24,000 BTU (2 Ton)	11200	2800	
AIR CONDITIONER 32,000 BTU (3 ton)	14000	3500	
AIR CONDITIONER 48,000 BTU (4 ton)	20000	5000	
1 HP WATER PUMP, CODE G	5760	1920	
2 HP WATER PUMP, CODE G	7500	2500	
1/3 HP WATER PUMP	2000	1000	
3/4 HP WATER PUMP, CODE L	6800	1700	
1-1/2 HP WATER PUMP, CODE L	9600	2400	
1/4 HP ATTIC FAN, CODE G	1200	600	
ELECTRIC CLOTHES DRYER	8000	6000	·
GAS CLOTHES DRYER	2100	750	
WASHING MACHINE	1600	800	
ELECTRIC RANGE 6" ELEMENT		1200	
ELECTRIC RANGE 8" ELEMENT		2000	·
OTHER			
TOTAL WATTS NEEDED (SUMMAT			

5.0 OPTIONAL STANDBY GENERATORS

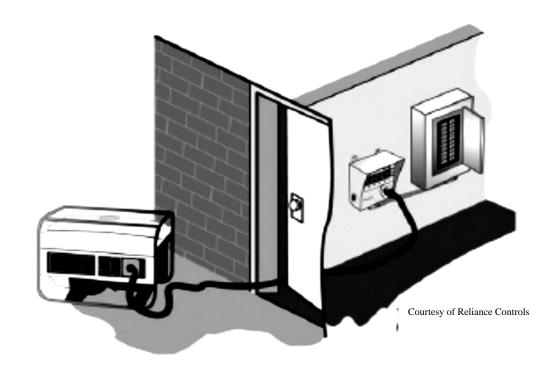
5.1 GENERAL

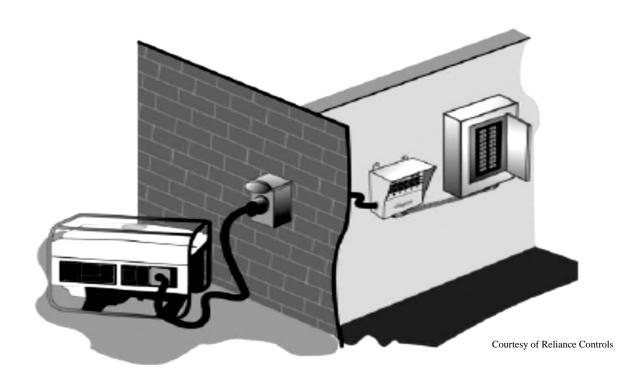
5.1.1 Manual Transfer Switches composed of molded-case breakers or contactors are not acceptable. The switch mechanism shall be designed to provide a positive contact movement and transition. An example of a correctly configured manual switch is shown below

5.1.2 The Manual Transfer Switch shall be marked by the manufacturer "suitable for use as service equipment" and have a short circuit fault current rating that matches the maximum fault current available at the metering point. This is shown in Table 1 below.

Transformer Size Serving the House	Maximum Fault Current (A)
10 kVA CSP Transformer	2,719
15 kVA CSP Transformer	4,263
25 kVA CSP Transformer	13,022
50 kVA CSP Transformer	18,065

Table 1 Maximum Fault Current


If the manual transfer switch can not meet this value, an external circuit breaker or fused disconnect with fault limiting capabilities will be installed between the Company supply and the transfer switch.


5.1.3 The neutral and grounding conductor must be carried through to the generator. The neutral and ground will be separated at the generator.

5.2 PORTABLE GENERATOR

5.2.1 PARTIAL LOAD TRANSFER

Below are illustrated examples of solutions to serving a part of Customer's Service panel.

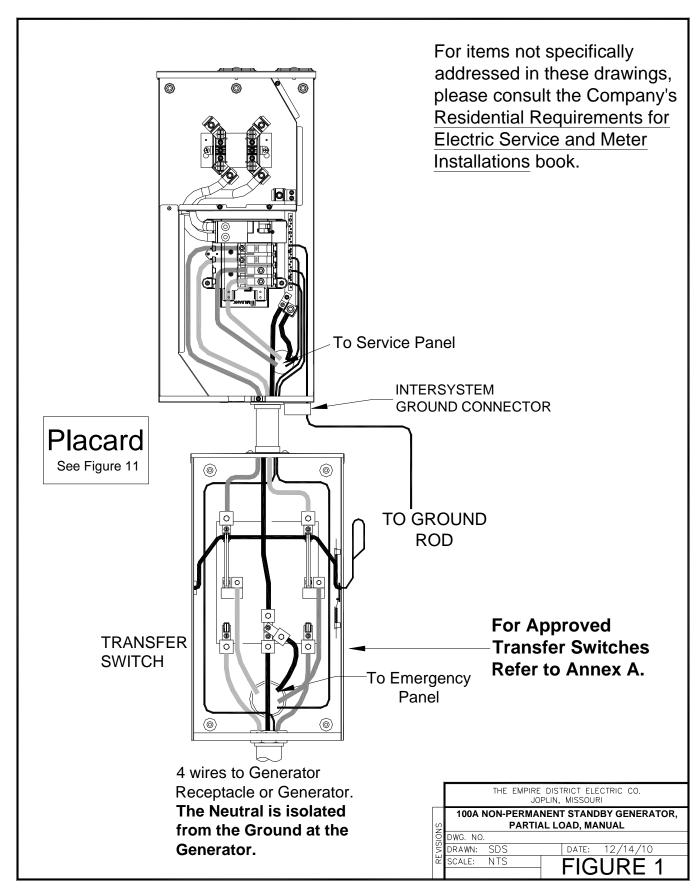


Figure 1: 100A Non-Permanent Standby Generator, Partial Load, Manual

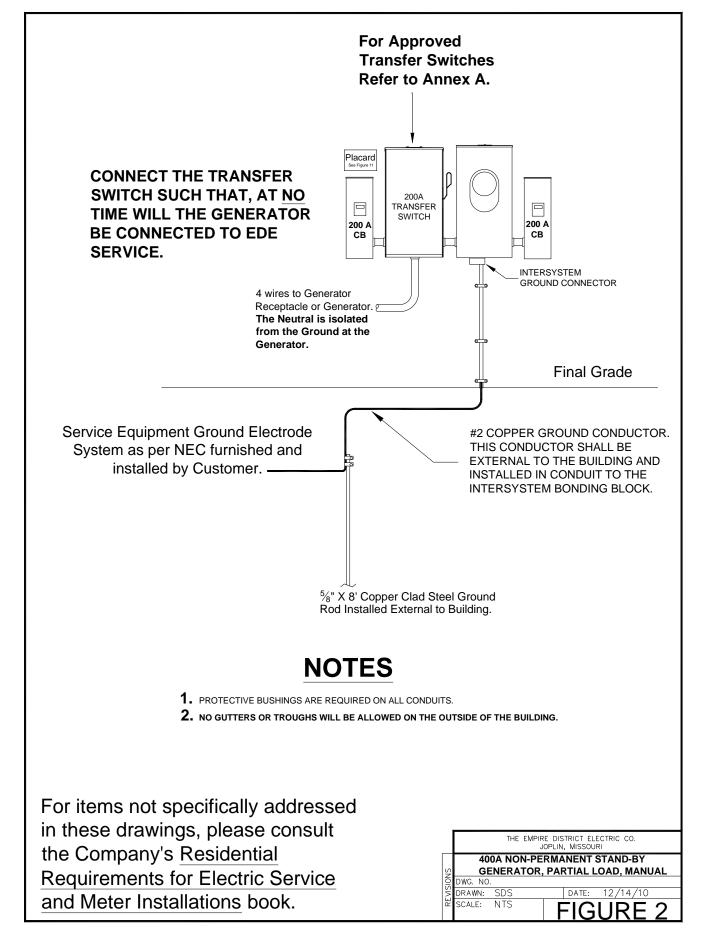


Figure 2: 400A Non-Permanent Standby Generator, Partial Load, Manual

5.2.2 WHOLE LOAD TRANSFER

Following are specific drawings addressing the proper configurations for this application.

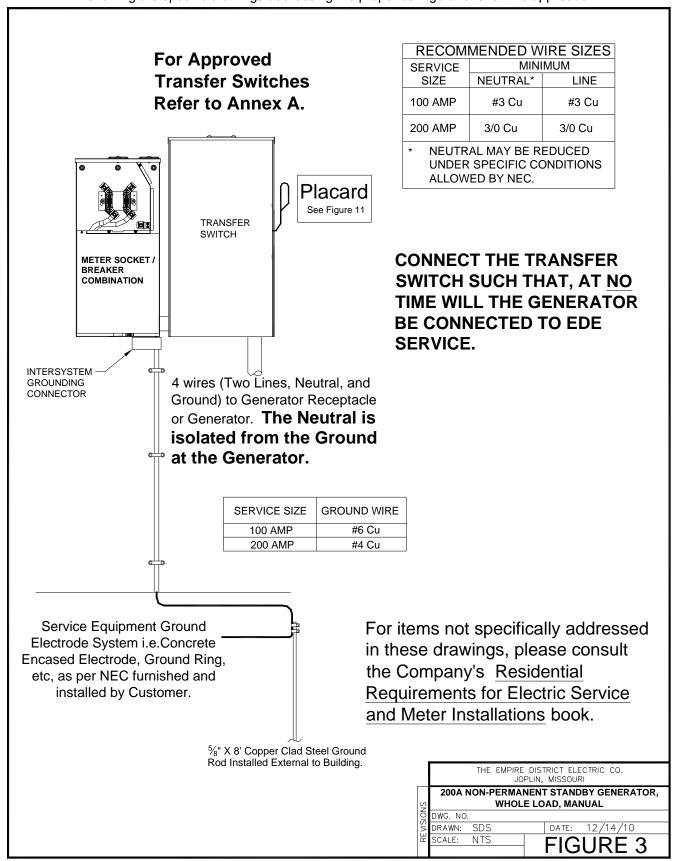


Figure 3: 200A Non-Permanent Standby Generator, Whole Load, Manual

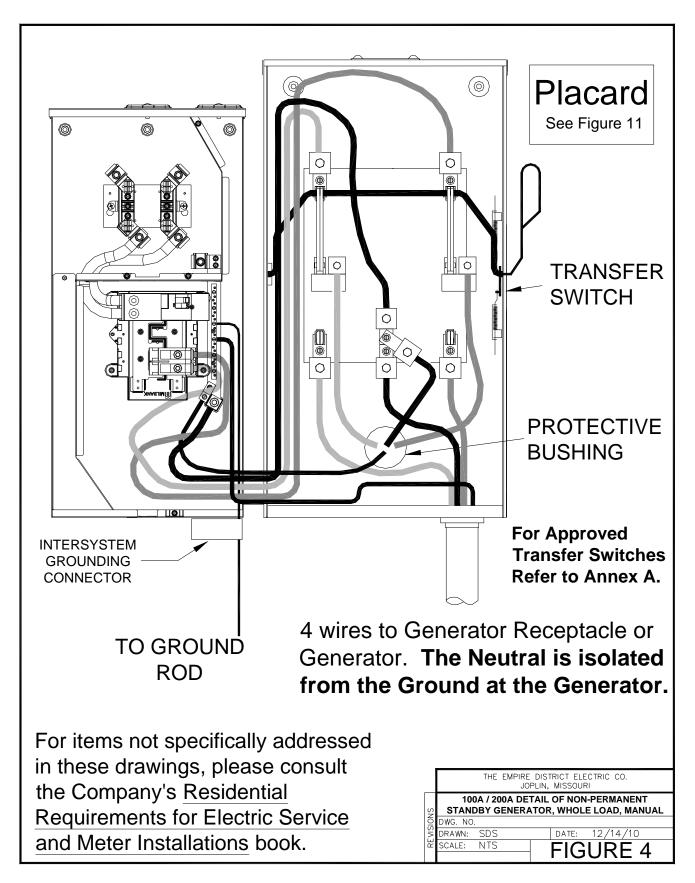


Figure 4: 100A / 200A Detail of Non-Permanent Standby Generator, Whole Load, Manual

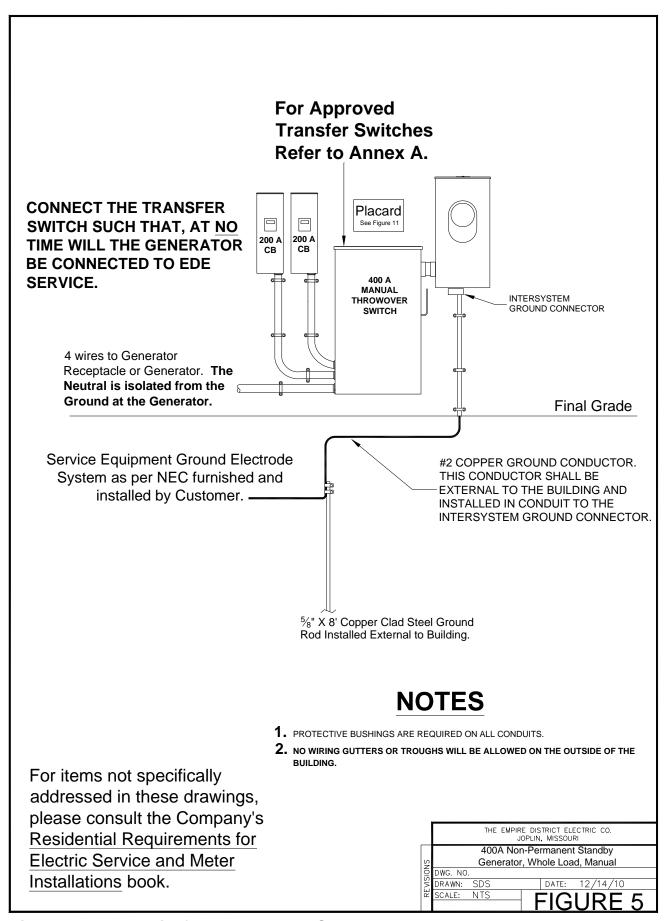


Figure 5: 400A Detail of Non-Permanent Standby Generator, Whole Load, Manual

5.3 PERMANENTLY INSTALLED GENERATOR

5.3.1 PARTIAL LOAD TRANSFER

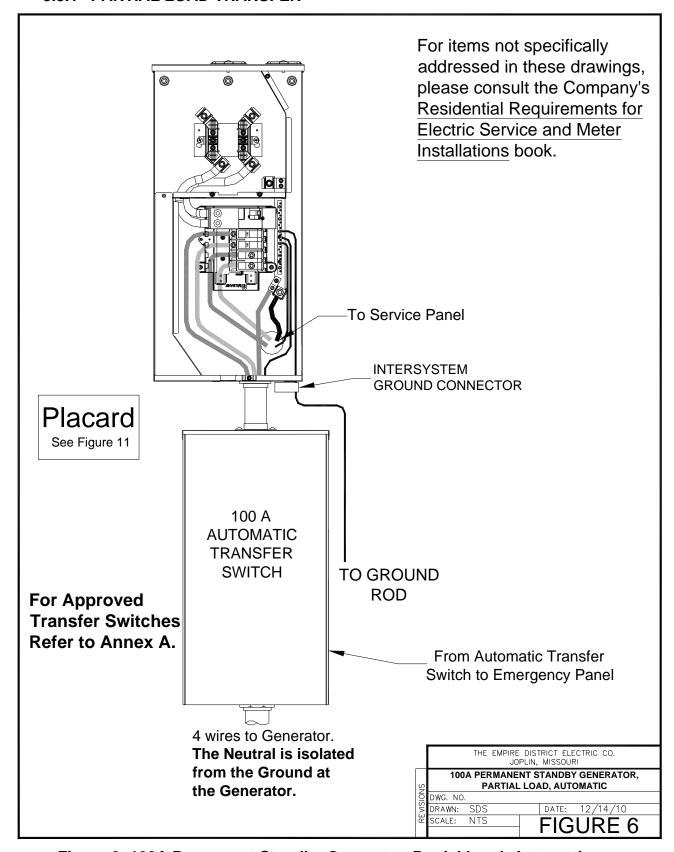


Figure 6: 100A Permanent Standby Generator, Partial Load, Automatic

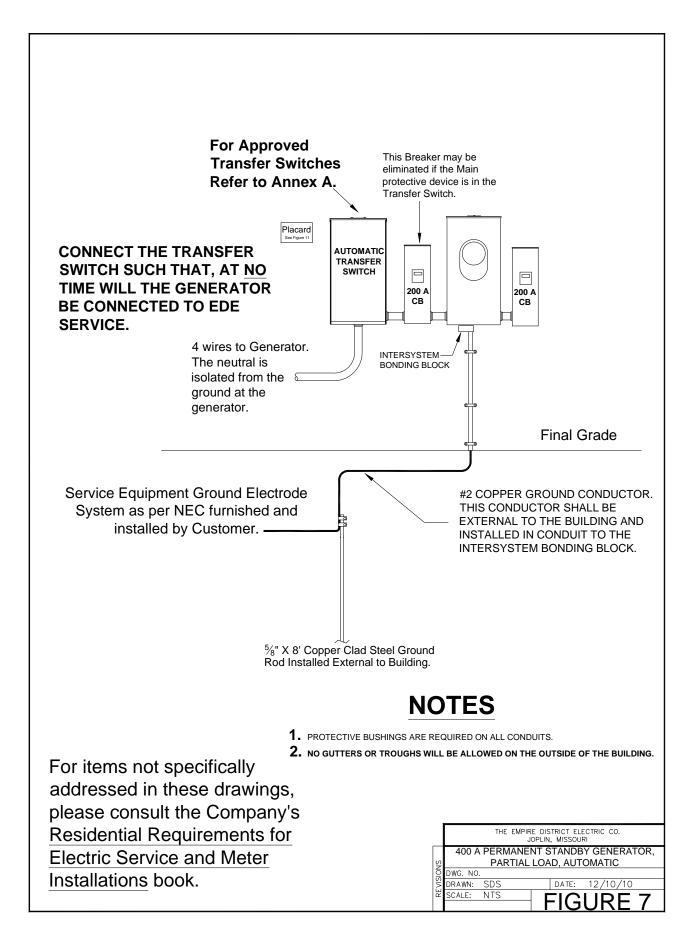


Figure 7: 400A Permanent Standby Generator, Partial Load, Automatic

5.3.2 WHOLE LOAD TRANSFER

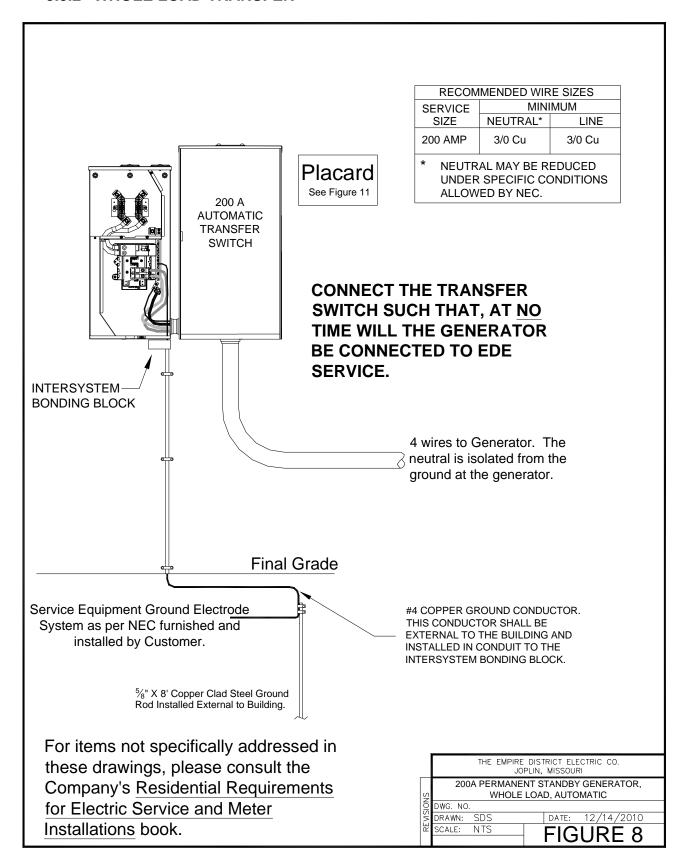


Figure 8: 200A Permanent Standby Generator, Whole Load, Automatic

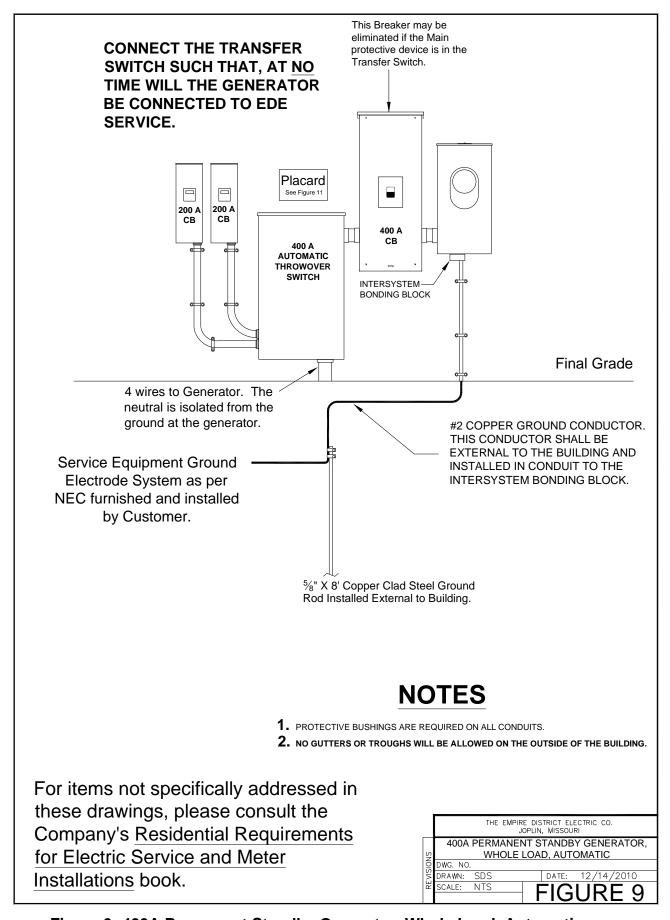
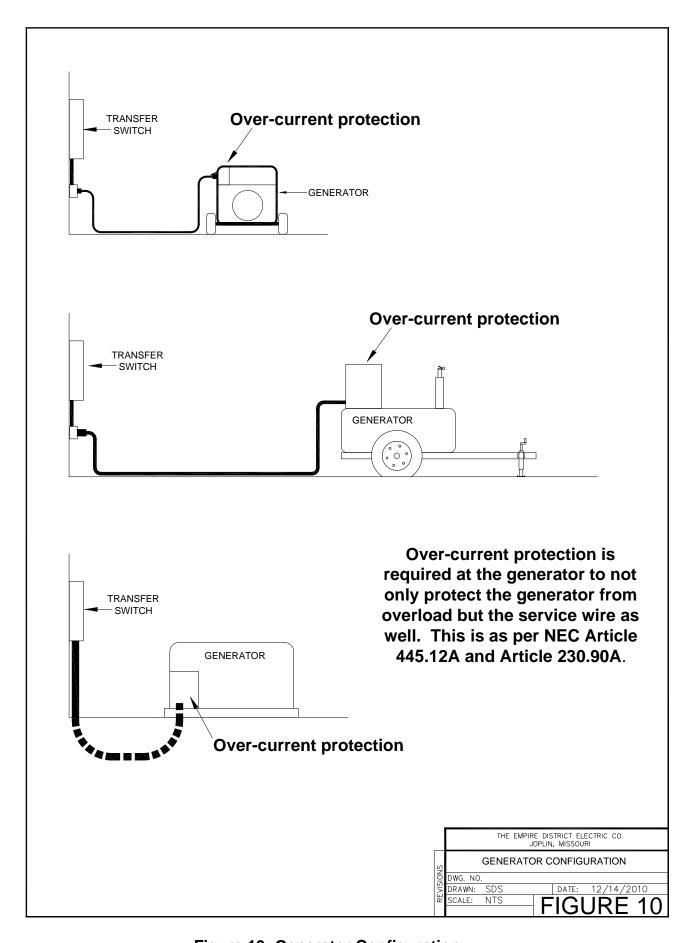
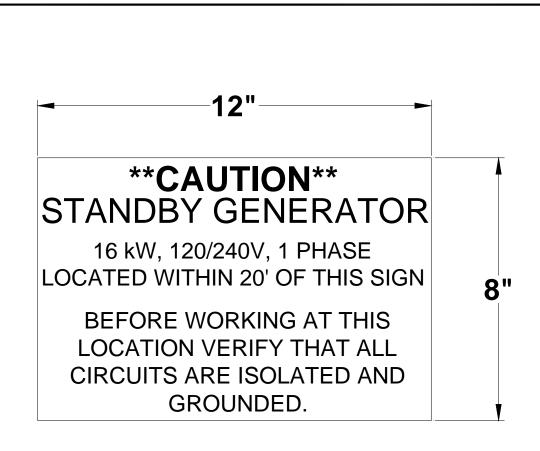



Figure 9: 400A Permanent Standby Generator, Whole Load, Automatic

Figure 10: Generator Configuration

5.3.3 AUTOMATIC TRANSFER


- 5.3.3.1 "Y" Mechanical Switches Acceptable
 "W" Mechanical Switches Acceptable with delay
 Breakers & Contactors Not Acceptable (See Section 5.3.3.3)
- 5.3.3.2 Designs utilizing components of molded-case circuit breakers, contactors, or parts thereof which are not intended for continuous duty, repetitive switching or transfer between two active power sources are not acceptable.
- 5.3.3.3 If the switch is composed of molded case circuit breakers specifically designed as an automatic transfer switch or switching mechanical held contactors, the automatic transfer switch must have circuitry that will verify that all poles are open on the utility switch portion so as to confirm the generator is not supplying voltage back into the EDE's distribution system. If a pole is found to be "stuck" closed, the device will not transfer the feed to the emergency source.
- 5.3.3.4 Where neutral conductors must be switched as shown on an electrical engineering design, the Automatic Transfer Switch shall be provided with fully-rated overlapping neutral transfer contacts. The neutrals of the normal and emergency power sources shall be connected together only during the transfer and retransfer operation and remain connected together until power source contacts close on the source to which the transfer is being made. The overlapping neutral contacts shall not overlap for a period greater than 100 milliseconds. Neutral switching contacts which are not overlapping are not acceptable.
- 5.3.3.5 During the open transition back to utility source, there shall be a delay of at least 3 seconds to allow the load's inductive voltages to decay. These requirements shall apply to both actual emergency operation as well as to testing the generator.
- 5.3.3.6 This type of installation requires a main disconnecting mechanism between the Automatic Transfer Switch and the Metering Point at a readily accessible location on the external portion of the building or structure. This is required to allow isolation from EDE during severe utility service conditions so that the Generator and Automatic Transfer Switch can be protected from unnecessary transfers.
- 5.3.3.7 The generator must be capable of providing all loads that are connected to it through the automatic transfer switch as per NEC 702.5 (B) 2.
- 5.3.3.8 The Customer may supply all or a portion of the electrical load from the standby generator as dictated by the guidelines of this section
- 5.3.3.9 If the transfer switch is located inside the structure and/or away from the meter socket location, a placard will be installed at the meter socket location as per Figure 11. Please note that the Customer shall change the following to conform to their situation.

Size of the Generator

Generator service voltage

Generator phase, i.e. single phase or three phase

The location of the Generator from the location of the placard

NOTES

- 1. The sign material shall be an etched laminated plastic. The surface shall be black and the substrate shall be white. This is so specified to have the letters appear as white when they are etched into the plastic.
- 2. The lettering for the "CAUTION" and the "STANDBY GENERATOR" shall be 3/4" tall.
- 3. All other lettering shall be ½" tall.
- 4. These placards shall be screwed or bolted externally to the structure as close as practicable to the meter socket and at the same level as the meter. Gluing is not acceptable.

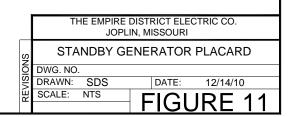


Figure 11: Standby Generator Placard

Annex A EQUIPMENT LIST

Approved Manual Transfer Switches

Description	Durham	Milbank	Ronk	Asco
100A Manual Transfer	SV110DT		7103	D185A210000#*
200A Manual Transfer	SV210DT		7205A	D185A220000#*
400A Manual Transfer	SV410DT		7406	

Description	GE (Midwest		
100A Manual Transfer	GS1101B12UL		
200A Manual Transfer	GS1202B20UL		
400A Manual Transfer	GS1404B01UL		

Approved Automatic Transfer Switches

Description	Generac	Asco	Kohler	Siemens	Cummins Onan	
100 Automatic Transfer	RTSN100A3	D185A2100F##* or		SR100R or		
without Circuit Breaker		3002200F1####*,		SL100R		
100 Automatic Transfer	RTSE100A3	1AUSA2100F##* or		SR100RD or	RSS 100-6868	
with Circuit Breaker	KISLIOOAS	3AUS2100F1####*		SL100RD	K33 100-0000	
200 Automatic Transfer	RTSN200A3	D185A2200F##* or	RDT-CFNC-0200A	SR200R or		
without Circuit Breaker	KISINZUUAS	3002200F1####*	KDT-CFNC-0200A	SL200R		
200 Automatic Transfer	RTSE200A3	1AUSA2200F##* or	RDT-CFNC-200ASE	SR200RD ro	RSS 200-6869	
with Circuit Breaker	KISEZUUAS	3AUS2200F1####*	RD1-CFNC-200ASE	SL200RD	K33 200-0009	
400 Automatic Transfer	RTSN400A3	D185A2400F##* or		SR400R or		
without Circuit Breaker	K I SIN4UUAS	3002200F1####*		SL400R		
400 Automatic Transfer		1AUSA2400F##* or		SR400RD or		
with Circuit Breaker	RTSE400A3	3AUS2400F1####*		SL400RD		
* The # complete represent anxion control and accessory entities and the application of the avoidably which are at the						

^{*} The # symbols represent engine control and accessory options, and the enclosure configuration of the switch which are at the discretion of the Customer.

Description	Briggs and Stratton
100 Automatic Transfer	
Without Circuit Breaker	
100 Automatic Transfer	071045
With Circuit Breaker	071043
200 Automatic Transfer	
without Circuit Breaker	
200 Automatic Transfer	071046
with Circuit Breaker	071040
400 Automatic Transfer	
without Circuit Breaker	
400 Automatic Transfer	
with Circuit Breaker	